Analysis of the Deformation Behavior in Tension and Tension-Creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23 °C and 455 °C) Using In Situ SEM Experiments

    Research output: Contribution to journalArticle

    • 6 Citations

    Abstract

    The deformation behavior of a Ti-3Al-2.5V (wt pct) near-α alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Two plates with distinct textures were examined. Tensile experiments were performed at 296 K and 728 K (455 °C) (~0.4Tm), while a tensile-creep experiment was performed at 728 K (455 °C) and 180 MPa (σ/σys = 0.72). The active deformation systems were identified in the α phase using electron backscattered diffraction based slip-trace analysis and SEM images of the surface. Prismatic slip deformation was the dominant slip mode observed for all the experiments in both plates, which was supported by a critical resolved shear stress (CRSS) ratio analysis. However, due to the texture of plate 1, which strongly favored the activation of prismatic slip, the percentages of prismatic slip activity for specimens from plate 1 tested at 296 K and 728 K (23 °C and 455 °C) were higher than the specimens from plate 2 under the same testing conditions. T1 twinning was an active deformation mode at both 296 K and 728 K (23 °C and 455 °C), but the extent of twinning activity decreased with increased temperature. T1 twinning was more frequently observed in specimens from plate 2, which exhibited a higher fraction of twinning systems favoring activation at both 296 K and 728 K (23 °C and 455 °C). The tension-creep experiment revealed less slip and more grain boundary sliding than in the higher strain rate tensile experiments. Using a previously demonstrated bootstrapping statistical analysis methodology, the relative CRSS ratios of prismatic, pyramidal 〈a〉, pyramidal 〈c+a〉, and T1 twinning deformation systems compared with basal slip were calculated and discussed in light of similar measurements made on CP Ti and Ti-5Al-2.5Sn (wt pct).

    Original languageEnglish (US)
    Pages (from-to)6053-6066
    Number of pages14
    JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Volume45
    Issue number13
    DOIs
    StatePublished - Oct 24 2014

    Profile

    Carbamyl Phosphate
    slip
    Common Bile Duct Diseases
    Experiments
    Twinning
    twinning
    Creep
    Scanning electron microscopy
    scanning electron microscopy
    Preganglionic Autonomic Fibers
    Cape Verde
    Protamine Kinase
    stress ratio
    critical loading
    shear stress
    textures
    activation
    Shear stress
    Textures
    Chemical activation

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Metals and Alloys
    • Mechanics of Materials

    Cite this

    @article{4e0b3450f43249c6bf7b3aee4435a99b,
    title = "Analysis of the Deformation Behavior in Tension and Tension-Creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23 °C and 455 °C) Using In Situ SEM Experiments",
    abstract = "The deformation behavior of a Ti-3Al-2.5V (wt pct) near-α alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Two plates with distinct textures were examined. Tensile experiments were performed at 296 K and 728 K (455 °C) (~0.4Tm), while a tensile-creep experiment was performed at 728 K (455 °C) and 180 MPa (σ/σys = 0.72). The active deformation systems were identified in the α phase using electron backscattered diffraction based slip-trace analysis and SEM images of the surface. Prismatic slip deformation was the dominant slip mode observed for all the experiments in both plates, which was supported by a critical resolved shear stress (CRSS) ratio analysis. However, due to the texture of plate 1, which strongly favored the activation of prismatic slip, the percentages of prismatic slip activity for specimens from plate 1 tested at 296 K and 728 K (23 °C and 455 °C) were higher than the specimens from plate 2 under the same testing conditions. T1 twinning was an active deformation mode at both 296 K and 728 K (23 °C and 455 °C), but the extent of twinning activity decreased with increased temperature. T1 twinning was more frequently observed in specimens from plate 2, which exhibited a higher fraction of twinning systems favoring activation at both 296 K and 728 K (23 °C and 455 °C). The tension-creep experiment revealed less slip and more grain boundary sliding than in the higher strain rate tensile experiments. Using a previously demonstrated bootstrapping statistical analysis methodology, the relative CRSS ratios of prismatic, pyramidal 〈a〉, pyramidal 〈c+a〉, and T1 twinning deformation systems compared with basal slip were calculated and discussed in light of similar measurements made on CP Ti and Ti-5Al-2.5Sn (wt pct).",
    author = "Hongmei Li and Boehlert, {Carl J.} and Bieler, {Thomas R.} and Crimp, {Martin A.}",
    year = "2014",
    month = "10",
    doi = "10.1007/s11661-014-2576-7",
    volume = "45",
    pages = "6053--6066",
    journal = "Metallurgical Transactions A (Physical Metallurgy and Materials Science)",
    issn = "1073-5623",
    publisher = "Springer Boston",
    number = "13",

    }

    TY - JOUR

    T1 - Analysis of the Deformation Behavior in Tension and Tension-Creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23 °C and 455 °C) Using In Situ SEM Experiments

    AU - Li,Hongmei

    AU - Boehlert,Carl J.

    AU - Bieler,Thomas R.

    AU - Crimp,Martin A.

    PY - 2014/10/24

    Y1 - 2014/10/24

    N2 - The deformation behavior of a Ti-3Al-2.5V (wt pct) near-α alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Two plates with distinct textures were examined. Tensile experiments were performed at 296 K and 728 K (455 °C) (~0.4Tm), while a tensile-creep experiment was performed at 728 K (455 °C) and 180 MPa (σ/σys = 0.72). The active deformation systems were identified in the α phase using electron backscattered diffraction based slip-trace analysis and SEM images of the surface. Prismatic slip deformation was the dominant slip mode observed for all the experiments in both plates, which was supported by a critical resolved shear stress (CRSS) ratio analysis. However, due to the texture of plate 1, which strongly favored the activation of prismatic slip, the percentages of prismatic slip activity for specimens from plate 1 tested at 296 K and 728 K (23 °C and 455 °C) were higher than the specimens from plate 2 under the same testing conditions. T1 twinning was an active deformation mode at both 296 K and 728 K (23 °C and 455 °C), but the extent of twinning activity decreased with increased temperature. T1 twinning was more frequently observed in specimens from plate 2, which exhibited a higher fraction of twinning systems favoring activation at both 296 K and 728 K (23 °C and 455 °C). The tension-creep experiment revealed less slip and more grain boundary sliding than in the higher strain rate tensile experiments. Using a previously demonstrated bootstrapping statistical analysis methodology, the relative CRSS ratios of prismatic, pyramidal 〈a〉, pyramidal 〈c+a〉, and T1 twinning deformation systems compared with basal slip were calculated and discussed in light of similar measurements made on CP Ti and Ti-5Al-2.5Sn (wt pct).

    AB - The deformation behavior of a Ti-3Al-2.5V (wt pct) near-α alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Two plates with distinct textures were examined. Tensile experiments were performed at 296 K and 728 K (455 °C) (~0.4Tm), while a tensile-creep experiment was performed at 728 K (455 °C) and 180 MPa (σ/σys = 0.72). The active deformation systems were identified in the α phase using electron backscattered diffraction based slip-trace analysis and SEM images of the surface. Prismatic slip deformation was the dominant slip mode observed for all the experiments in both plates, which was supported by a critical resolved shear stress (CRSS) ratio analysis. However, due to the texture of plate 1, which strongly favored the activation of prismatic slip, the percentages of prismatic slip activity for specimens from plate 1 tested at 296 K and 728 K (23 °C and 455 °C) were higher than the specimens from plate 2 under the same testing conditions. T1 twinning was an active deformation mode at both 296 K and 728 K (23 °C and 455 °C), but the extent of twinning activity decreased with increased temperature. T1 twinning was more frequently observed in specimens from plate 2, which exhibited a higher fraction of twinning systems favoring activation at both 296 K and 728 K (23 °C and 455 °C). The tension-creep experiment revealed less slip and more grain boundary sliding than in the higher strain rate tensile experiments. Using a previously demonstrated bootstrapping statistical analysis methodology, the relative CRSS ratios of prismatic, pyramidal 〈a〉, pyramidal 〈c+a〉, and T1 twinning deformation systems compared with basal slip were calculated and discussed in light of similar measurements made on CP Ti and Ti-5Al-2.5Sn (wt pct).

    UR - http://www.scopus.com/inward/record.url?scp=84919838735&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84919838735&partnerID=8YFLogxK

    U2 - 10.1007/s11661-014-2576-7

    DO - 10.1007/s11661-014-2576-7

    M3 - Article

    VL - 45

    SP - 6053

    EP - 6066

    JO - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    T2 - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    JF - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    SN - 1073-5623

    IS - 13

    ER -