Application of the cruciform specimen geometry to obtain transverse interface-property data in a high-fiber-volume-fraction SiC/titanium alloy composite

C. J. Boehlert, B. S. Majumdar, D. B. Miracle

Research output: Research - peer-reviewArticle

  • 5 Citations

Abstract

A combined experimental and computational methodology was used to determine the relevant strength and residual-stress parameters in a manufactured, high-fiber-volume-fraction multiply metal matrix composite (MMC). The method was similar to that previously demonstrated on single-fiber composites, which had an extremely low fiber volume fraction. Variabilities in residual stresses and debond strengths in high-fiber-volume-fraction multiply composites, as well as current demands on the micromechanics-based computational prediction and validation of complex composite systems, necessitated the establishment of the test methodology described here. The model material chosen for this investigation was a plasma-processed six-ply, unidirectional Sigma-1240/Ti-6Al-2Sn-4Zr-2Mo (wt pct) MMC containing 32 vol pct continous fibers. Room-temperature transverse tensile experiments were conducted on cruciform specimens. In addition, rectangular specimens were also evaluated in order to verify their applicability in obtaining valid interfacial property data. Debonding events, evaluated at different positions within a given specimen geometry, were captured by stress-strain curves and metallographic examination. Analytical and finite-element stress analyses were conducted to estiamte the geometrical stress-concentration factors associated with the cruciform geometry. Residual stresses were estimated using etching and computational procedures. For the cruciform specimens, the experimental fiber-matrix debond strength was determined to be 22 MPa. Separation occurred within the carbon-rich interfacial layer, consistent with some previous observations on similar systems. Thus, the cruciform test methodology described here can be successfully used for transverse interfacial-property evaluation of high-fiber-volume-fraction composites. For the rectangular specimens, the strain gages at different positions along the specimen width confirmed that the interface crack had initiated from the free edge and propagated inward. Hence, rectangular specimens cannot be used for valid interface strength measurements in multiply composites.

LanguageEnglish (US)
Pages3143-3155
Number of pages13
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume32
Issue number12
StatePublished - Dec 2001
Externally publishedYes

Profile

specimen geometry
fiber volume fraction
titanium alloys
composite materials
Titanium alloys
Volume fraction
Geometry
Fibers
Composite materials
residual stress
methodology
Residual stresses
metal matrix composites
fibers
Metals
micromechanics
stress concentration
fiber composites
strain gages
cracks

ASJC Scopus subject areas

  • Materials Science(all)
  • Metals and Alloys

Cite this

@article{be46336d60db4e8d914e386869938782,
title = "Application of the cruciform specimen geometry to obtain transverse interface-property data in a high-fiber-volume-fraction SiC/titanium alloy composite",
abstract = "A combined experimental and computational methodology was used to determine the relevant strength and residual-stress parameters in a manufactured, high-fiber-volume-fraction multiply metal matrix composite (MMC). The method was similar to that previously demonstrated on single-fiber composites, which had an extremely low fiber volume fraction. Variabilities in residual stresses and debond strengths in high-fiber-volume-fraction multiply composites, as well as current demands on the micromechanics-based computational prediction and validation of complex composite systems, necessitated the establishment of the test methodology described here. The model material chosen for this investigation was a plasma-processed six-ply, unidirectional Sigma-1240/Ti-6Al-2Sn-4Zr-2Mo (wt pct) MMC containing 32 vol pct continous fibers. Room-temperature transverse tensile experiments were conducted on cruciform specimens. In addition, rectangular specimens were also evaluated in order to verify their applicability in obtaining valid interfacial property data. Debonding events, evaluated at different positions within a given specimen geometry, were captured by stress-strain curves and metallographic examination. Analytical and finite-element stress analyses were conducted to estiamte the geometrical stress-concentration factors associated with the cruciform geometry. Residual stresses were estimated using etching and computational procedures. For the cruciform specimens, the experimental fiber-matrix debond strength was determined to be 22 MPa. Separation occurred within the carbon-rich interfacial layer, consistent with some previous observations on similar systems. Thus, the cruciform test methodology described here can be successfully used for transverse interfacial-property evaluation of high-fiber-volume-fraction composites. For the rectangular specimens, the strain gages at different positions along the specimen width confirmed that the interface crack had initiated from the free edge and propagated inward. Hence, rectangular specimens cannot be used for valid interface strength measurements in multiply composites.",
author = "Boehlert, {C. J.} and Majumdar, {B. S.} and Miracle, {D. B.}",
year = "2001",
month = "12",
volume = "32",
pages = "3143--3155",
journal = "Metallurgical Transactions A (Physical Metallurgy and Materials Science)",
issn = "1073-5623",
publisher = "Springer Boston",
number = "12",

}

TY - JOUR

T1 - Application of the cruciform specimen geometry to obtain transverse interface-property data in a high-fiber-volume-fraction SiC/titanium alloy composite

AU - Boehlert,C. J.

AU - Majumdar,B. S.

AU - Miracle,D. B.

PY - 2001/12

Y1 - 2001/12

N2 - A combined experimental and computational methodology was used to determine the relevant strength and residual-stress parameters in a manufactured, high-fiber-volume-fraction multiply metal matrix composite (MMC). The method was similar to that previously demonstrated on single-fiber composites, which had an extremely low fiber volume fraction. Variabilities in residual stresses and debond strengths in high-fiber-volume-fraction multiply composites, as well as current demands on the micromechanics-based computational prediction and validation of complex composite systems, necessitated the establishment of the test methodology described here. The model material chosen for this investigation was a plasma-processed six-ply, unidirectional Sigma-1240/Ti-6Al-2Sn-4Zr-2Mo (wt pct) MMC containing 32 vol pct continous fibers. Room-temperature transverse tensile experiments were conducted on cruciform specimens. In addition, rectangular specimens were also evaluated in order to verify their applicability in obtaining valid interfacial property data. Debonding events, evaluated at different positions within a given specimen geometry, were captured by stress-strain curves and metallographic examination. Analytical and finite-element stress analyses were conducted to estiamte the geometrical stress-concentration factors associated with the cruciform geometry. Residual stresses were estimated using etching and computational procedures. For the cruciform specimens, the experimental fiber-matrix debond strength was determined to be 22 MPa. Separation occurred within the carbon-rich interfacial layer, consistent with some previous observations on similar systems. Thus, the cruciform test methodology described here can be successfully used for transverse interfacial-property evaluation of high-fiber-volume-fraction composites. For the rectangular specimens, the strain gages at different positions along the specimen width confirmed that the interface crack had initiated from the free edge and propagated inward. Hence, rectangular specimens cannot be used for valid interface strength measurements in multiply composites.

AB - A combined experimental and computational methodology was used to determine the relevant strength and residual-stress parameters in a manufactured, high-fiber-volume-fraction multiply metal matrix composite (MMC). The method was similar to that previously demonstrated on single-fiber composites, which had an extremely low fiber volume fraction. Variabilities in residual stresses and debond strengths in high-fiber-volume-fraction multiply composites, as well as current demands on the micromechanics-based computational prediction and validation of complex composite systems, necessitated the establishment of the test methodology described here. The model material chosen for this investigation was a plasma-processed six-ply, unidirectional Sigma-1240/Ti-6Al-2Sn-4Zr-2Mo (wt pct) MMC containing 32 vol pct continous fibers. Room-temperature transverse tensile experiments were conducted on cruciform specimens. In addition, rectangular specimens were also evaluated in order to verify their applicability in obtaining valid interfacial property data. Debonding events, evaluated at different positions within a given specimen geometry, were captured by stress-strain curves and metallographic examination. Analytical and finite-element stress analyses were conducted to estiamte the geometrical stress-concentration factors associated with the cruciform geometry. Residual stresses were estimated using etching and computational procedures. For the cruciform specimens, the experimental fiber-matrix debond strength was determined to be 22 MPa. Separation occurred within the carbon-rich interfacial layer, consistent with some previous observations on similar systems. Thus, the cruciform test methodology described here can be successfully used for transverse interfacial-property evaluation of high-fiber-volume-fraction composites. For the rectangular specimens, the strain gages at different positions along the specimen width confirmed that the interface crack had initiated from the free edge and propagated inward. Hence, rectangular specimens cannot be used for valid interface strength measurements in multiply composites.

UR - http://www.scopus.com/inward/record.url?scp=0035715347&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035715347&partnerID=8YFLogxK

M3 - Article

VL - 32

SP - 3143

EP - 3155

JO - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

T2 - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

JF - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

SN - 1073-5623

IS - 12

ER -