Distinguishing patients with Parkinson's disease subtypes from normal controls based on functional network regional efficiencies

Delong Zhang, Xian Liu, Jun Chen, Bo Liu, Christina Chan

    Research output: Research - peer-reviewArticle

    • 7 Citations

    Abstract

    Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson's disease (PD) are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies) were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs using linear discriminant analysis. The results demonstrate that the subtypespecific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus). In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.

    LanguageEnglish (US)
    Article numbere115131
    JournalPLoS One
    Volume9
    Issue number12
    DOIs
    StatePublished - Dec 22 2014

    Profile

    Parkinson Disease
    Parkinson disease
    Cerebellum
    cerebellum
    Tremor
    Brain
    signs and symptoms (animals and humans)
    brain
    Occipital Lobe
    Putamen
    Discriminant Analysis
    Basal Ganglia
    Thalamus
    Hippocampus
    Magnetic Resonance Imaging
    Pathology
    Parkinson Disease 10
    thalamus
    hippocampus
    pathophysiology

    ASJC Scopus subject areas

    • Agricultural and Biological Sciences(all)
    • Biochemistry, Genetics and Molecular Biology(all)
    • Medicine(all)

    Cite this

    Distinguishing patients with Parkinson's disease subtypes from normal controls based on functional network regional efficiencies. / Zhang, Delong; Liu, Xian; Chen, Jun; Liu, Bo; Chan, Christina.

    In: PLoS One, Vol. 9, No. 12, e115131, 22.12.2014.

    Research output: Research - peer-reviewArticle

    @article{25a77689bc8743a49aa98c6803d3ac40,
    title = "Distinguishing patients with Parkinson's disease subtypes from normal controls based on functional network regional efficiencies",
    abstract = "Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson's disease (PD) are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies) were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs using linear discriminant analysis. The results demonstrate that the subtypespecific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus). In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.",
    author = "Delong Zhang and Xian Liu and Jun Chen and Bo Liu and Christina Chan",
    year = "2014",
    month = "12",
    doi = "10.1371/journal.pone.0115131",
    volume = "9",
    journal = "PLoS One",
    issn = "1932-6203",
    publisher = "Public Library of Science",
    number = "12",

    }

    TY - JOUR

    T1 - Distinguishing patients with Parkinson's disease subtypes from normal controls based on functional network regional efficiencies

    AU - Zhang,Delong

    AU - Liu,Xian

    AU - Chen,Jun

    AU - Liu,Bo

    AU - Chan,Christina

    PY - 2014/12/22

    Y1 - 2014/12/22

    N2 - Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson's disease (PD) are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies) were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs using linear discriminant analysis. The results demonstrate that the subtypespecific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus). In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.

    AB - Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson's disease (PD) are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies) were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs using linear discriminant analysis. The results demonstrate that the subtypespecific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus). In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.

    UR - http://www.scopus.com/inward/record.url?scp=84919820349&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84919820349&partnerID=8YFLogxK

    U2 - 10.1371/journal.pone.0115131

    DO - 10.1371/journal.pone.0115131

    M3 - Article

    VL - 9

    JO - PLoS One

    T2 - PLoS One

    JF - PLoS One

    SN - 1932-6203

    IS - 12

    M1 - e115131

    ER -