Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (weight percent)

Well Chen, C. J. Boehlert

    Research output: Contribution to journalArticle

    • 12 Citations

    Abstract

    This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

    Original languageEnglish (US)
    Pages (from-to)1568-1578
    Number of pages11
    JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Volume40
    Issue number7
    DOIs
    StatePublished - 2009

    Profile

    boron
    Boron
    casts
    Creep
    temperature
    Acetanilides
    Carbamyl Phosphate
    Temperature
    grain size
    Addison Disease
    tensile creep
    tensile deformation
    slip
    electron microscopes
    scanning
    Edema Disease of Swine
    Common Bile Duct Diseases
    Microcracking
    Yield stress
    Electron microscopes

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Metals and Alloys
    • Mechanics of Materials

    Cite this

    @article{31c3df8cfb414fc19fdcbed9d4fdc30e,
    title = "Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (weight percent)",
    abstract = "This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.",
    author = "Well Chen and Boehlert, {C. J.}",
    year = "2009",
    doi = "10.1007/s11661-009-9838-9",
    volume = "40",
    pages = "1568--1578",
    journal = "Metallurgical Transactions A (Physical Metallurgy and Materials Science)",
    issn = "1073-5623",
    publisher = "Springer Boston",
    number = "7",

    }

    TY - JOUR

    T1 - Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (weight percent)

    AU - Chen,Well

    AU - Boehlert,C. J.

    PY - 2009

    Y1 - 2009

    N2 - This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

    AB - This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

    UR - http://www.scopus.com/inward/record.url?scp=67650444030&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=67650444030&partnerID=8YFLogxK

    U2 - 10.1007/s11661-009-9838-9

    DO - 10.1007/s11661-009-9838-9

    M3 - Article

    VL - 40

    SP - 1568

    EP - 1578

    JO - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    T2 - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    JF - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    SN - 1073-5623

    IS - 7

    ER -