Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (weight percent)

Well Chen, C. J. Boehlert

    Research output: Research - peer-reviewArticle

    • 12 Citations

    Abstract

    This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

    LanguageEnglish (US)
    Pages1568-1578
    Number of pages11
    JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Volume40
    Issue number7
    DOIs
    StatePublished - 2009

    Profile

    casts
    boron
    temperature
    Boron
    Creep
    Temperature
    grain size
    tensile creep
    tensile deformation
    slip
    electron microscopes
    scanning
    Microcracking
    Yield stress
    Electron microscopes
    Scanning
    Experiments

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Metals and Alloys
    • Mechanics of Materials

    Cite this

    @article{31c3df8cfb414fc19fdcbed9d4fdc30e,
    title = "Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (weight percent)",
    abstract = "This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.",
    author = "Well Chen and Boehlert, {C. J.}",
    year = "2009",
    doi = "10.1007/s11661-009-9838-9",
    volume = "40",
    pages = "1568--1578",
    journal = "Metallurgical Transactions A (Physical Metallurgy and Materials Science)",
    issn = "1073-5623",
    publisher = "Springer Boston",
    number = "7",

    }

    TY - JOUR

    T1 - Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (weight percent)

    AU - Chen,Well

    AU - Boehlert,C. J.

    PY - 2009

    Y1 - 2009

    N2 - This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

    AB - This work investigated the effect of nominal boron additions of 0.1, 0.4, and 1 wt pct on the intermediate-temperature (455 °C to 565 °C) tensile and tensile-creep deformation behavior of as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) for applied stresses between 138 and 600 MPa. A 0.1 wt pct boron addition resulted in a refinement of the as-cast grain size from 550 to 75 μ m. Additional boron additions resulted in a less dramatic refinement of the as-cast grain size. Boron additions stabilized the orthorhombic TiB phase where the average TiB-phase volume percents were 0.7, 2.3, and 5.4 for the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.1B (wt pct), Ti-6Al-2Sn-4Zr-2Mo-0.1Si-0.4B (wt pct), and Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloys, respectively. Overall, the boron additions did not have a dramatic effect on the creep behavior of Ti-6Al-2Sn-4Zr-2Mo-0.1Si, though the Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1B (wt pct) alloy exhibited lower minimum creep rates than the baseline Ti-6Al-2Sn-4Zr-2Mo-0.1Si (wt pct) alloy. The sequence of surface deformation events during the elevated-temperature tensile deformation was characterized using in-situ experiments performed inside a scanning electron microscope. The TiB whisker microcracking occurred at stresses well below the global yield stress. Multiple and extensive TiB cracking occurred after global yielding. The α + β phase slip occurred after TiB whisker cracking.

    UR - http://www.scopus.com/inward/record.url?scp=67650444030&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=67650444030&partnerID=8YFLogxK

    U2 - 10.1007/s11661-009-9838-9

    DO - 10.1007/s11661-009-9838-9

    M3 - Article

    VL - 40

    SP - 1568

    EP - 1578

    JO - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    T2 - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    JF - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

    SN - 1073-5623

    IS - 7

    ER -