General offender theory

U. Meierfrankenfeld, G. Parmeggiani, B. Stellmacher

Research output: Contribution to journalArticle

Abstract

We present an offender theory that is symmetric in offender and offended group and also a replacement theorem that does not need that the groups in question are abelian. We then use this theory to define variations of Thompson and Baumann subgroups and prove a general Baumann argument.

LanguageEnglish (US)
Pages264-288
Number of pages25
JournalJournal of Algebra
Volume495
DOIs
StatePublished - Feb 1 2018

Profile

Replacement
Subgroup
Theorem

Keywords

  • Baumann argument
  • Finite group theory
  • Offenders
  • Replacement theorem
  • Thompson and Baumann subgroup

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Meierfrankenfeld, U., Parmeggiani, G., & Stellmacher, B. (2018). General offender theory. Journal of Algebra, 495, 264-288. DOI: 10.1016/j.jalgebra.2017.11.005

General offender theory. / Meierfrankenfeld, U.; Parmeggiani, G.; Stellmacher, B.

In: Journal of Algebra, Vol. 495, 01.02.2018, p. 264-288.

Research output: Contribution to journalArticle

Meierfrankenfeld, U, Parmeggiani, G & Stellmacher, B 2018, 'General offender theory' Journal of Algebra, vol 495, pp. 264-288. DOI: 10.1016/j.jalgebra.2017.11.005
Meierfrankenfeld U, Parmeggiani G, Stellmacher B. General offender theory. Journal of Algebra. 2018 Feb 1;495:264-288. Available from, DOI: 10.1016/j.jalgebra.2017.11.005
Meierfrankenfeld, U. ; Parmeggiani, G. ; Stellmacher, B./ General offender theory. In: Journal of Algebra. 2018 ; Vol. 495. pp. 264-288
@article{fb8a6b7c3c254faa895a2c18b795ea46,
title = "General offender theory",
abstract = "We present an offender theory that is symmetric in offender and offended group and also a replacement theorem that does not need that the groups in question are abelian. We then use this theory to define variations of Thompson and Baumann subgroups and prove a general Baumann argument.",
keywords = "Baumann argument, Finite group theory, Offenders, Replacement theorem, Thompson and Baumann subgroup",
author = "U. Meierfrankenfeld and G. Parmeggiani and B. Stellmacher",
year = "2018",
month = "2",
day = "1",
doi = "10.1016/j.jalgebra.2017.11.005",
language = "English (US)",
volume = "495",
pages = "264--288",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - General offender theory

AU - Meierfrankenfeld,U.

AU - Parmeggiani,G.

AU - Stellmacher,B.

PY - 2018/2/1

Y1 - 2018/2/1

N2 - We present an offender theory that is symmetric in offender and offended group and also a replacement theorem that does not need that the groups in question are abelian. We then use this theory to define variations of Thompson and Baumann subgroups and prove a general Baumann argument.

AB - We present an offender theory that is symmetric in offender and offended group and also a replacement theorem that does not need that the groups in question are abelian. We then use this theory to define variations of Thompson and Baumann subgroups and prove a general Baumann argument.

KW - Baumann argument

KW - Finite group theory

KW - Offenders

KW - Replacement theorem

KW - Thompson and Baumann subgroup

UR - http://www.scopus.com/inward/record.url?scp=85034110757&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85034110757&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2017.11.005

DO - 10.1016/j.jalgebra.2017.11.005

M3 - Article

VL - 495

SP - 264

EP - 288

JO - Journal of Algebra

T2 - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

ER -