In-Situ Study of the Tensile Deformation and Fracture Modes in Peak-Aged Cast Mg-11Y-5Gd-2Zn-0.5Zr (Weight Percent)

D. D. Yin, Q. D. Wang, C. J. Boehlert, Z. Chen, H. M. Li, R. K. Mishra, A. Chakkedath

Research output: Contribution to journalArticle

  • 3 Citations

Abstract

Tensile deformation and fracture modes in peak-aged cast Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) samples at temperatures between 298 K [25 °C, room temperature (RT)] and 623 K (350 °C) (0.33 to 0.69Tm) were studied in situ inside a scanning electron microscope (SEM) using electron backscatter diffraction (EBSD) and slip trace analysis. The ultimate tensile strength (UTS) (265 MPa) and yield strength (YS) (193 MPa) at 523 K (250 °C) were 91 and 80 pct of those at RT, respectively. The observed dominant slip mode transitioned from basal 〈a〉 slip (100 pct) to basal 〈a〉 slip (81 pct) combined with prismatic 〈a〉 slip (12 pct) from RT to 473 K (200 °C). As the temperature increased to 623 K (350 °C), basal 〈a〉 slip (67 pct) and pyramidal 〈c+a〉 slip (25 pct) became the dominant slip modes. The estimated critical resolved shear stress (CRSS) ratio of pyramidal 〈c+a〉 slip/basal 〈a〉 slip (7.3) was lower than that of prismatic 〈a〉 slip/basal 〈a〉 slip (12.7) at temperatures above 573 K (300 °C). Prismatic 〈a〉 slip and pyramidal 〈c+a〉 slip were more active at higher strains for moderate temperatures [473 K to 523 K (200 °C to 250 °C)] and at high temperatures [573 K to 623 K (300 °C to 350 °C)], respectively. A transition in the dominant fracture mode occurred from transgranular cracking (40 pct) combined with intergranular cracking (60 pct) to intergranular cracking as temperatures increased from RT to 623 K (350 °C). The intergranular crack nucleation sites tended to be located at grain boundaries and the interface between the Mg matrix and the large intermetallic grain boundary X phase. Slip bands were associated with transgranular crack nucleation.

LanguageEnglish (US)
Pages1-15
Number of pages15
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
DOIs
StateAccepted/In press - Sep 19 2016

Profile

tensile deformation
casts
slip
Temperature
Grain boundaries
Nucleation
room temperature
Cracks
Trace analysis
cracks
grain boundaries
temperature
nucleation
stress ratio
Electron diffraction
Intermetallics
Yield stress
Shear stress
critical loading
Tensile strength

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Cite this

In-Situ Study of the Tensile Deformation and Fracture Modes in Peak-Aged Cast Mg-11Y-5Gd-2Zn-0.5Zr (Weight Percent). / Yin, D. D.; Wang, Q. D.; Boehlert, C. J.; Chen, Z.; Li, H. M.; Mishra, R. K.; Chakkedath, A.

In: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 19.09.2016, p. 1-15.

Research output: Contribution to journalArticle

@article{284595a8fdbd4412b80a05be668f2a12,
title = "In-Situ Study of the Tensile Deformation and Fracture Modes in Peak-Aged Cast Mg-11Y-5Gd-2Zn-0.5Zr (Weight Percent)",
abstract = "Tensile deformation and fracture modes in peak-aged cast Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) samples at temperatures between 298 K [25 °C, room temperature (RT)] and 623 K (350 °C) (0.33 to 0.69Tm) were studied in situ inside a scanning electron microscope (SEM) using electron backscatter diffraction (EBSD) and slip trace analysis. The ultimate tensile strength (UTS) (265 MPa) and yield strength (YS) (193 MPa) at 523 K (250 °C) were 91 and 80 pct of those at RT, respectively. The observed dominant slip mode transitioned from basal 〈a〉 slip (100 pct) to basal 〈a〉 slip (81 pct) combined with prismatic 〈a〉 slip (12 pct) from RT to 473 K (200 °C). As the temperature increased to 623 K (350 °C), basal 〈a〉 slip (67 pct) and pyramidal 〈c+a〉 slip (25 pct) became the dominant slip modes. The estimated critical resolved shear stress (CRSS) ratio of pyramidal 〈c+a〉 slip/basal 〈a〉 slip (7.3) was lower than that of prismatic 〈a〉 slip/basal 〈a〉 slip (12.7) at temperatures above 573 K (300 °C). Prismatic 〈a〉 slip and pyramidal 〈c+a〉 slip were more active at higher strains for moderate temperatures [473 K to 523 K (200 °C to 250 °C)] and at high temperatures [573 K to 623 K (300 °C to 350 °C)], respectively. A transition in the dominant fracture mode occurred from transgranular cracking (40 pct) combined with intergranular cracking (60 pct) to intergranular cracking as temperatures increased from RT to 623 K (350 °C). The intergranular crack nucleation sites tended to be located at grain boundaries and the interface between the Mg matrix and the large intermetallic grain boundary X phase. Slip bands were associated with transgranular crack nucleation.",
author = "Yin, {D. D.} and Wang, {Q. D.} and Boehlert, {C. J.} and Z. Chen and Li, {H. M.} and Mishra, {R. K.} and A. Chakkedath",
year = "2016",
month = "9",
day = "19",
doi = "10.1007/s11661-016-3709-y",
language = "English (US)",
pages = "1--15",
journal = "Metallurgical Transactions A (Physical Metallurgy and Materials Science)",
issn = "1073-5623",
publisher = "Springer Boston",

}

TY - JOUR

T1 - In-Situ Study of the Tensile Deformation and Fracture Modes in Peak-Aged Cast Mg-11Y-5Gd-2Zn-0.5Zr (Weight Percent)

AU - Yin,D. D.

AU - Wang,Q. D.

AU - Boehlert,C. J.

AU - Chen,Z.

AU - Li,H. M.

AU - Mishra,R. K.

AU - Chakkedath,A.

PY - 2016/9/19

Y1 - 2016/9/19

N2 - Tensile deformation and fracture modes in peak-aged cast Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) samples at temperatures between 298 K [25 °C, room temperature (RT)] and 623 K (350 °C) (0.33 to 0.69Tm) were studied in situ inside a scanning electron microscope (SEM) using electron backscatter diffraction (EBSD) and slip trace analysis. The ultimate tensile strength (UTS) (265 MPa) and yield strength (YS) (193 MPa) at 523 K (250 °C) were 91 and 80 pct of those at RT, respectively. The observed dominant slip mode transitioned from basal 〈a〉 slip (100 pct) to basal 〈a〉 slip (81 pct) combined with prismatic 〈a〉 slip (12 pct) from RT to 473 K (200 °C). As the temperature increased to 623 K (350 °C), basal 〈a〉 slip (67 pct) and pyramidal 〈c+a〉 slip (25 pct) became the dominant slip modes. The estimated critical resolved shear stress (CRSS) ratio of pyramidal 〈c+a〉 slip/basal 〈a〉 slip (7.3) was lower than that of prismatic 〈a〉 slip/basal 〈a〉 slip (12.7) at temperatures above 573 K (300 °C). Prismatic 〈a〉 slip and pyramidal 〈c+a〉 slip were more active at higher strains for moderate temperatures [473 K to 523 K (200 °C to 250 °C)] and at high temperatures [573 K to 623 K (300 °C to 350 °C)], respectively. A transition in the dominant fracture mode occurred from transgranular cracking (40 pct) combined with intergranular cracking (60 pct) to intergranular cracking as temperatures increased from RT to 623 K (350 °C). The intergranular crack nucleation sites tended to be located at grain boundaries and the interface between the Mg matrix and the large intermetallic grain boundary X phase. Slip bands were associated with transgranular crack nucleation.

AB - Tensile deformation and fracture modes in peak-aged cast Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) samples at temperatures between 298 K [25 °C, room temperature (RT)] and 623 K (350 °C) (0.33 to 0.69Tm) were studied in situ inside a scanning electron microscope (SEM) using electron backscatter diffraction (EBSD) and slip trace analysis. The ultimate tensile strength (UTS) (265 MPa) and yield strength (YS) (193 MPa) at 523 K (250 °C) were 91 and 80 pct of those at RT, respectively. The observed dominant slip mode transitioned from basal 〈a〉 slip (100 pct) to basal 〈a〉 slip (81 pct) combined with prismatic 〈a〉 slip (12 pct) from RT to 473 K (200 °C). As the temperature increased to 623 K (350 °C), basal 〈a〉 slip (67 pct) and pyramidal 〈c+a〉 slip (25 pct) became the dominant slip modes. The estimated critical resolved shear stress (CRSS) ratio of pyramidal 〈c+a〉 slip/basal 〈a〉 slip (7.3) was lower than that of prismatic 〈a〉 slip/basal 〈a〉 slip (12.7) at temperatures above 573 K (300 °C). Prismatic 〈a〉 slip and pyramidal 〈c+a〉 slip were more active at higher strains for moderate temperatures [473 K to 523 K (200 °C to 250 °C)] and at high temperatures [573 K to 623 K (300 °C to 350 °C)], respectively. A transition in the dominant fracture mode occurred from transgranular cracking (40 pct) combined with intergranular cracking (60 pct) to intergranular cracking as temperatures increased from RT to 623 K (350 °C). The intergranular crack nucleation sites tended to be located at grain boundaries and the interface between the Mg matrix and the large intermetallic grain boundary X phase. Slip bands were associated with transgranular crack nucleation.

UR - http://www.scopus.com/inward/record.url?scp=84988411389&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84988411389&partnerID=8YFLogxK

U2 - 10.1007/s11661-016-3709-y

DO - 10.1007/s11661-016-3709-y

M3 - Article

SP - 1

EP - 15

JO - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

T2 - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

JF - Metallurgical Transactions A (Physical Metallurgy and Materials Science)

SN - 1073-5623

ER -