Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide

Travis V. Gulledge, Nicholas M. Collette, Emily Mackey, Stephanie E. Johnstone, Yasamin Moazami, Daniel A. Todd, Adam J. Moeser, Joshua G. Pierce, Nadja B. Cech, Scott M. Laster

Research output: Research - peer-reviewArticle

Abstract

Ethnopharmacological relevance Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. Aim of the study The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. Materials and methods A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. Results A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100 µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1 min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. Conclusions These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents.

LanguageEnglish (US)
Pages166-174
Number of pages9
JournalJournal of Ethnopharmacology
Volume212
DOIs
StatePublished - Feb 15 2018

Profile

Echinacea
Cell Degranulation
Mast Cells
Calcium
Acids
Calcimycin
Jurkat Cells
Bone Marrow
Cell Line
Therapeutics
Hexosaminidases
Fluorometry
North American Indians
Pharyngitis
Calcium Ionophores
Histamine Release
Enzyme Assays
Gingiva
Second Messenger Systems
Prostaglandins E

Keywords

  • Alkylamide
  • Allergies
  • Echinacea purpurea
  • Inflammation
  • Mast cell

ASJC Scopus subject areas

  • Pharmacology
  • Drug Discovery

Cite this

Gulledge, T. V., Collette, N. M., Mackey, E., Johnstone, S. E., Moazami, Y., Todd, D. A., ... Laster, S. M. (2018). Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide. Journal of Ethnopharmacology, 212, 166-174. DOI: 10.1016/j.jep.2017.10.012

Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide. / Gulledge, Travis V.; Collette, Nicholas M.; Mackey, Emily; Johnstone, Stephanie E.; Moazami, Yasamin; Todd, Daniel A.; Moeser, Adam J.; Pierce, Joshua G.; Cech, Nadja B.; Laster, Scott M.

In: Journal of Ethnopharmacology, Vol. 212, 15.02.2018, p. 166-174.

Research output: Research - peer-reviewArticle

Gulledge, TV, Collette, NM, Mackey, E, Johnstone, SE, Moazami, Y, Todd, DA, Moeser, AJ, Pierce, JG, Cech, NB & Laster, SM 2018, 'Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide' Journal of Ethnopharmacology, vol 212, pp. 166-174. DOI: 10.1016/j.jep.2017.10.012
Gulledge, Travis V. ; Collette, Nicholas M. ; Mackey, Emily ; Johnstone, Stephanie E. ; Moazami, Yasamin ; Todd, Daniel A. ; Moeser, Adam J. ; Pierce, Joshua G. ; Cech, Nadja B. ; Laster, Scott M./ Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide. In: Journal of Ethnopharmacology. 2018 ; Vol. 212. pp. 166-174
@article{cfb725b35b6b49a1934ebdd457b3ea7d,
title = "Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide",
abstract = "Ethnopharmacological relevance Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. Aim of the study The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. Materials and methods A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. Results A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100 µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1 min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. Conclusions These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents.",
keywords = "Alkylamide, Allergies, Echinacea purpurea, Inflammation, Mast cell",
author = "Gulledge, {Travis V.} and Collette, {Nicholas M.} and Emily Mackey and Johnstone, {Stephanie E.} and Yasamin Moazami and Todd, {Daniel A.} and Moeser, {Adam J.} and Pierce, {Joshua G.} and Cech, {Nadja B.} and Laster, {Scott M.}",
year = "2018",
month = "2",
doi = "10.1016/j.jep.2017.10.012",
volume = "212",
pages = "166--174",
journal = "Journal of Ethnopharmacology",
issn = "0378-8741",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide

AU - Gulledge,Travis V.

AU - Collette,Nicholas M.

AU - Mackey,Emily

AU - Johnstone,Stephanie E.

AU - Moazami,Yasamin

AU - Todd,Daniel A.

AU - Moeser,Adam J.

AU - Pierce,Joshua G.

AU - Cech,Nadja B.

AU - Laster,Scott M.

PY - 2018/2/15

Y1 - 2018/2/15

N2 - Ethnopharmacological relevance Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. Aim of the study The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. Materials and methods A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. Results A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100 µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1 min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. Conclusions These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents.

AB - Ethnopharmacological relevance Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. Aim of the study The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. Materials and methods A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. Results A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100 µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1 min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. Conclusions These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents.

KW - Alkylamide

KW - Allergies

KW - Echinacea purpurea

KW - Inflammation

KW - Mast cell

UR - http://www.scopus.com/inward/record.url?scp=85032586796&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85032586796&partnerID=8YFLogxK

U2 - 10.1016/j.jep.2017.10.012

DO - 10.1016/j.jep.2017.10.012

M3 - Article

VL - 212

SP - 166

EP - 174

JO - Journal of Ethnopharmacology

T2 - Journal of Ethnopharmacology

JF - Journal of Ethnopharmacology

SN - 0378-8741

ER -