Phase dependent tool wear in turning Ti-6Al-4V using polycrystalline diamond and carbide inserts

David J. Schrock, Di Kang, Thomas R. Bieler, Patrick Kwon

Research output: Contribution to journalArticle

  • 17 Citations

Abstract

Tool wear of polycrystalline diamond inserts was analyzed in turning experiments on Ti-6Al-4V. Evidence of phase transformation in turning titanium work material is presented and its impact on tool wear is discussed. Confocal laser scanning microscopy was used to analyze the rake face of the turning inserts. At cutting speed of 61 m/min, the rake face exhibited scalloped-shaped, fractured wear, characteristic of typical attrition wear. At cutting speed of 122 m/min, a smooth crater was observed, which is a typical characteristic of diffusion/dissolution wear. At the cutting speed of 91 m/min, the wear features were a combination of those observed at speeds of 61 m/min and 122 m/min. A comparison of the wear on the polycrystalline diamond (PCD) tools to that of WC-6Co from our earlier work is also discussed. Microstructural analysis of the of both the undeformed work material and the chip using electron-backscatter diffraction provided evidence to support the phase transformation. Temperature estimates on the rake face of the tool previously extracted from Finite Element Method (FEM) support the possibility of phase transformation at the high cutting speed tested. The difference in the wear pattern was also linked to the extent of recrystallization in the titanium work material. At 61 m/min there was more alpha phase in the work material without much recrystallization, which generated uneven scalloped wear. At 122 m/min, phase transformation of the existing alpha phase to the beta phase in the work material and recrystallization increased the dissolution/diffusion wear process.

LanguageEnglish (US)
Article number041018
JournalJournal of Manufacturing Science and Engineering, Transactions of the ASME
Volume136
Issue number4
DOIs
StatePublished - 2014

Profile

Carbides
Diamonds
Wear of materials
Phase transitions
Dissolution
Titanium
Electron diffraction
Microscopic examination
Crystallization
Scanning
Finite element method
Lasers

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Computer Science Applications
  • Control and Systems Engineering

Cite this

@article{c2e6144d78844506a554f111782acca4,
title = "Phase dependent tool wear in turning Ti-6Al-4V using polycrystalline diamond and carbide inserts",
abstract = "Tool wear of polycrystalline diamond inserts was analyzed in turning experiments on Ti-6Al-4V. Evidence of phase transformation in turning titanium work material is presented and its impact on tool wear is discussed. Confocal laser scanning microscopy was used to analyze the rake face of the turning inserts. At cutting speed of 61 m/min, the rake face exhibited scalloped-shaped, fractured wear, characteristic of typical attrition wear. At cutting speed of 122 m/min, a smooth crater was observed, which is a typical characteristic of diffusion/dissolution wear. At the cutting speed of 91 m/min, the wear features were a combination of those observed at speeds of 61 m/min and 122 m/min. A comparison of the wear on the polycrystalline diamond (PCD) tools to that of WC-6Co from our earlier work is also discussed. Microstructural analysis of the of both the undeformed work material and the chip using electron-backscatter diffraction provided evidence to support the phase transformation. Temperature estimates on the rake face of the tool previously extracted from Finite Element Method (FEM) support the possibility of phase transformation at the high cutting speed tested. The difference in the wear pattern was also linked to the extent of recrystallization in the titanium work material. At 61 m/min there was more alpha phase in the work material without much recrystallization, which generated uneven scalloped wear. At 122 m/min, phase transformation of the existing alpha phase to the beta phase in the work material and recrystallization increased the dissolution/diffusion wear process.",
author = "Schrock, {David J.} and Di Kang and Bieler, {Thomas R.} and Patrick Kwon",
year = "2014",
doi = "10.1115/1.4027674",
language = "English (US)",
volume = "136",
journal = "Journal of Manufacturing Science and Engineering, Transactions of the ASME",
issn = "1087-1357",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "4",

}

TY - JOUR

T1 - Phase dependent tool wear in turning Ti-6Al-4V using polycrystalline diamond and carbide inserts

AU - Schrock,David J.

AU - Kang,Di

AU - Bieler,Thomas R.

AU - Kwon,Patrick

PY - 2014

Y1 - 2014

N2 - Tool wear of polycrystalline diamond inserts was analyzed in turning experiments on Ti-6Al-4V. Evidence of phase transformation in turning titanium work material is presented and its impact on tool wear is discussed. Confocal laser scanning microscopy was used to analyze the rake face of the turning inserts. At cutting speed of 61 m/min, the rake face exhibited scalloped-shaped, fractured wear, characteristic of typical attrition wear. At cutting speed of 122 m/min, a smooth crater was observed, which is a typical characteristic of diffusion/dissolution wear. At the cutting speed of 91 m/min, the wear features were a combination of those observed at speeds of 61 m/min and 122 m/min. A comparison of the wear on the polycrystalline diamond (PCD) tools to that of WC-6Co from our earlier work is also discussed. Microstructural analysis of the of both the undeformed work material and the chip using electron-backscatter diffraction provided evidence to support the phase transformation. Temperature estimates on the rake face of the tool previously extracted from Finite Element Method (FEM) support the possibility of phase transformation at the high cutting speed tested. The difference in the wear pattern was also linked to the extent of recrystallization in the titanium work material. At 61 m/min there was more alpha phase in the work material without much recrystallization, which generated uneven scalloped wear. At 122 m/min, phase transformation of the existing alpha phase to the beta phase in the work material and recrystallization increased the dissolution/diffusion wear process.

AB - Tool wear of polycrystalline diamond inserts was analyzed in turning experiments on Ti-6Al-4V. Evidence of phase transformation in turning titanium work material is presented and its impact on tool wear is discussed. Confocal laser scanning microscopy was used to analyze the rake face of the turning inserts. At cutting speed of 61 m/min, the rake face exhibited scalloped-shaped, fractured wear, characteristic of typical attrition wear. At cutting speed of 122 m/min, a smooth crater was observed, which is a typical characteristic of diffusion/dissolution wear. At the cutting speed of 91 m/min, the wear features were a combination of those observed at speeds of 61 m/min and 122 m/min. A comparison of the wear on the polycrystalline diamond (PCD) tools to that of WC-6Co from our earlier work is also discussed. Microstructural analysis of the of both the undeformed work material and the chip using electron-backscatter diffraction provided evidence to support the phase transformation. Temperature estimates on the rake face of the tool previously extracted from Finite Element Method (FEM) support the possibility of phase transformation at the high cutting speed tested. The difference in the wear pattern was also linked to the extent of recrystallization in the titanium work material. At 61 m/min there was more alpha phase in the work material without much recrystallization, which generated uneven scalloped wear. At 122 m/min, phase transformation of the existing alpha phase to the beta phase in the work material and recrystallization increased the dissolution/diffusion wear process.

UR - http://www.scopus.com/inward/record.url?scp=84901925683&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901925683&partnerID=8YFLogxK

U2 - 10.1115/1.4027674

DO - 10.1115/1.4027674

M3 - Article

VL - 136

JO - Journal of Manufacturing Science and Engineering, Transactions of the ASME

T2 - Journal of Manufacturing Science and Engineering, Transactions of the ASME

JF - Journal of Manufacturing Science and Engineering, Transactions of the ASME

SN - 1087-1357

IS - 4

M1 - 041018

ER -