Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance

Theodore E. Burye, Jason D. Nicholas

    Research output: Contribution to journalArticle

    • 10 Citations

    Abstract

    Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.

    Original languageEnglish (US)
    Pages (from-to)287-298
    Number of pages12
    JournalJournal of Power Sources
    Volume301
    DOIs
    StatePublished - Jan 1 2016

    Profile

    Cathodes
    Coumestrol
    drying
    Solid oxide fuel cells (SOFC)
    Particle size
    Temperature
    Acetanilides
    Pacific Islands
    Octanols
    cathodes
    Citric acid
    citric acid
    solid oxide fuel cells
    purity
    Chelation
    Electrochemical impedance spectroscopy
    Nitrates
    Surface active agents
    Polarization
    X ray diffraction

    Keywords

    • Degradation
    • Desiccation
    • Electrode
    • Infiltration
    • Stability

    ASJC Scopus subject areas

    • Electrical and Electronic Engineering
    • Energy Engineering and Power Technology
    • Renewable Energy, Sustainability and the Environment
    • Physical and Theoretical Chemistry

    Cite this

    @article{d3c40162a0fe4d358b416f57df9cc843,
    title = "Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance",
    abstract = "Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.",
    keywords = "Degradation, Desiccation, Electrode, Infiltration, Stability",
    author = "Burye, {Theodore E.} and Nicholas, {Jason D.}",
    year = "2016",
    month = "1",
    doi = "10.1016/j.jpowsour.2015.10.012",
    volume = "301",
    pages = "287--298",
    journal = "Journal of Power Sources",
    issn = "0378-7753",
    publisher = "Elsevier",

    }

    TY - JOUR

    T1 - Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance

    AU - Burye,Theodore E.

    AU - Nicholas,Jason D.

    PY - 2016/1/1

    Y1 - 2016/1/1

    N2 - Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.

    AB - Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.

    KW - Degradation

    KW - Desiccation

    KW - Electrode

    KW - Infiltration

    KW - Stability

    UR - http://www.scopus.com/inward/record.url?scp=84944218354&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84944218354&partnerID=8YFLogxK

    U2 - 10.1016/j.jpowsour.2015.10.012

    DO - 10.1016/j.jpowsour.2015.10.012

    M3 - Article

    VL - 301

    SP - 287

    EP - 298

    JO - Journal of Power Sources

    T2 - Journal of Power Sources

    JF - Journal of Power Sources

    SN - 0378-7753

    ER -