Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

Zhenglun Li, Charles H. Chen, Eric L. Hegg, David B. Hodge

    Research output: Contribution to journalArticle

    • 15 Citations

    Abstract

    Background: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H 2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H 2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. Conclusions: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O 2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.

    Original languageEnglish (US)
    Article number119
    JournalBiotechnology for Biofuels
    Volume6
    Issue number1
    DOIs
    StatePublished - 2013

    Profile

    Oxidants
    Biomass
    Glucose
    biomass
    glucose
    Xylose
    Hydrogen Peroxide
    Hydrolysis
    Carbohydrates
    Hydrogen peroxide
    Sugars
    Catalysts
    hydrogen peroxide
    hydrolysis
    sugar
    catalyst
    Enzymatic hydrolysis
    Glucans
    Economics
    Enzymes

    Keywords

    • Bioenergy
    • Biofuels
    • Chemical pretreatment
    • Copper
    • Cu(bpy)
    • Hybrid poplar
    • Hydrogen peroxide
    • Lignin
    • Oxidation

    ASJC Scopus subject areas

    • Energy(all)
    • Management, Monitoring, Policy and Law
    • Biotechnology
    • Renewable Energy, Sustainability and the Environment
    • Applied Microbiology and Biotechnology

    Cite this

    Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings. / Li, Zhenglun; Chen, Charles H.; Hegg, Eric L.; Hodge, David B.

    In: Biotechnology for Biofuels, Vol. 6, No. 1, 119, 2013.

    Research output: Contribution to journalArticle

    Li, Zhenglun; Chen, Charles H.; Hegg, Eric L.; Hodge, David B. / Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings.

    In: Biotechnology for Biofuels, Vol. 6, No. 1, 119, 2013.

    Research output: Contribution to journalArticle

    @article{62953e04a02b4e16a044c4746b4e657b,
    title = "Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings",
    abstract = "Background: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H 2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H 2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. Conclusions: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O 2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.",
    keywords = "Bioenergy, Biofuels, Chemical pretreatment, Copper, Cu(bpy), Hybrid poplar, Hydrogen peroxide, Lignin, Oxidation",
    author = "Zhenglun Li and Chen, {Charles H.} and Hegg, {Eric L.} and Hodge, {David B.}",
    year = "2013",
    doi = "10.1186/1754-6834-6-119",
    volume = "6",
    journal = "Biotechnology for Biofuels",
    issn = "1754-6834",
    publisher = "BioMed Central",
    number = "1",

    }

    TY - JOUR

    T1 - Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

    AU - Li,Zhenglun

    AU - Chen,Charles H.

    AU - Hegg,Eric L.

    AU - Hodge,David B.

    PY - 2013

    Y1 - 2013

    N2 - Background: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H 2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H 2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. Conclusions: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O 2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.

    AB - Background: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H 2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H 2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. Conclusions: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O 2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach.

    KW - Bioenergy

    KW - Biofuels

    KW - Chemical pretreatment

    KW - Copper

    KW - Cu(bpy)

    KW - Hybrid poplar

    KW - Hydrogen peroxide

    KW - Lignin

    KW - Oxidation

    UR - http://www.scopus.com/inward/record.url?scp=84883082996&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84883082996&partnerID=8YFLogxK

    U2 - 10.1186/1754-6834-6-119

    DO - 10.1186/1754-6834-6-119

    M3 - Article

    VL - 6

    JO - Biotechnology for Biofuels

    T2 - Biotechnology for Biofuels

    JF - Biotechnology for Biofuels

    SN - 1754-6834

    IS - 1

    M1 - 119

    ER -